EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITE EUROPEEN DE NORMALISATION
EUROPAISCHES KOMITEE FUR NORMUNG

WORKSHOP CWA 14050-9
AGREEMENT November 2000

ICS 35.200; 35.240.40

Extensions for Financial Services (XFS) interface specification -
Release 3.0 - Part 9: Text Terminal Unit Device Class Interface

This CEN Workshop Agreement can in no way be held as being an official standard
as developed by CEN National Members.

© 2000 CEN All rights of exploitation in any form and by any means reserved world-wide for
CEN National Members

Ref. No CWA 14050-9:2000 E

_ Rue de Stassart, 36 « B-1050 Bruxelles
Tel : +32 2 550 08 11 « Fax : +32 2 550 08 19

Page 2
CWA 14050-9:2000

Table of Contents

0121V] {0 OSSO U PP PPPRRPPI 4
I [011 7o [F i 1o o DO PP RPN 6
1.1 Background to RelEASE 3.0 ...cccooieii i 6
1.2 XFS Service-Specific Programmingcooueei ittt naaeee e ... 6
2. TeXt TErMINGL UNIt.....ooiiiiieiiiiiie ettt e e s e e e e sa e e e e st e e e anre e e e aans teeaasneeessanneeesnnnes 8
T < (= =] ot O PR EPTTPRR 9
N 1 1 (o o] 1010 1 =T g T L TP TSP PP T OPTRRPI 10
4.1 WFS_INF_TTU _STATUS oottt eeee et see st n st sen st s s s e e, 10
4.2 WFS_INF_TTU _CAPABILITIES ... s 11
4.3 WFS_INF_TTU FORM_LIST coiiiiiiiieeteeeeeeesseeeeeses e tese s s ess s senesess st sese st enesesssesasn s senenaass o 12
4.4 WFS_INF_TTU_QUERY _FORM ...cootiiueeeeeeeteteeeeeeee e eeeeeeees v s seeee et es e s eeeeses s s s seesesesenseseeens 13
45 WFS_INF_TTU QUERY_FIELDooviiiiieceeeieesieeeee e eeesee s sene st asse s senesess s ssneneasnene 14
4.6 WES_INF_TTU_KEY DETAIL w.ooieeeeteteteeeeeeeeeeeeeeeeeeeteeeseee et et et eseseeteeeseseseseeseeesen s s eeeeeseneseneneen o 15
5. EXECULE COMIMANGS ...iitiiiiiiiiiiie ettt ettt ettt et e et b et e e st bt e e e sabb e e e e sabb e e e e snbaeeeeanbbeeeeanbbeees bbeeessnbeeeesans 18
5.1 WES_CMD _TTU BEEPeeouieeeeteeeeeeeeeee et ee ettt ettt et etee s e e et et e es e eeeeeser e eeeeseesen s ereean 18
5.2 WFS_CMD_TTU _CLEARSCREEN........coosiiiiitieestieseteeeesesetessee s ees s e ten s s senensannensnes 18
5.3 WFS_CMD_TTU _DISPLIGHT ...eittiitiititiittiiettieieieieieteiesssseesesesesesssssssesseseesesesseeeeeeseeeeeseeeeeeeeeeeeeeeees tes 19
5.4 WFS_CMD_TTU _SET _LED....coiiioieeeeieeiieeeseeeee e s s s aes st nesas s s s tan s e 19
55 WFS_CMD_TTU_SET_RESOLUTIONutttiiiiiiiiiiiieiiteieieneiieeaeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeteteteteseseseaeas 20
5.6 WFS_CMD_TTU WRITE_FORM.......cooiiiiiiieeieeeesessesseessesesessssesesessssssessssenesssnesessenesessenensanenenns 20
5.7 WFES_CMD_TTU_READ _FORMooititteteteeeeeeeeeeeeeeeeetet et eeeeeeeseses e etetes et es e eeeeesen s e eeeesen s s, 21
5.8 WFS_CMD_TTU WRITE w..oooviieiiieeceeeeeeeiee e teee et s et ses s n s aen s snentas s anenensnene e 22
5.9 WES_CMD _TTU _READootititeeeteteeeeeeeeteeee e eeeeee et e eeeeet et et e e eeeses et e e et et et et s e eeee et en s e seeeenes enenan 23
5.10 WFS_CMD_TTU RESET ..ottt tes st se s st sas s et nenass e enestesnss s s ensnen 26
B, EVBNIS .. e e r e e a e 27
6.1 WFS _EXEE_TTU_FIELDERRORuuuitiiiiiiiiiiiiiiiuieieieieiereieneeeeeeeseeeeeeeeeeeeeeeeeeeeeereeeeererereererererereeen 27
6.2 WFS_EXEE_TTU_FIELDWARNINGo 27
6.3 WFS_EXEE_TTU_KEY .oooiiieeiieeeeee oo e et ees st aen st n s n s s s s snen s sensnen 27
7. Form and Field DefinitioNScuveeiiiiiiieeiie et e e e e es reeeearaeeenaa 29
4 R B = (11110 RS} 1 = O PO PP OPU PP OPPPR 29
7.2 XFS form/media definition files in multi-vendor environmMents...........ccccceevviiene e 29

RS I Lo T A T B L= {11111 o PR 30

Page 3
CWA 14050-9:2000

A S =T 1= (o I D T= {1 1140 o TR 31

S T O o [TV [T i 11 [N 32

Page 4
CWA 14050-9:2000

Foreword

This CWA is revision 3.0 of the XFS interface specification.
The move from an XFS 2.0 specification (CWA 13449) to a 3.0 specification has been prompted by a series of factors.

Initially, there has been a technical imperative to extend the scope of the existing specification of the XFS Manager to
include new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now over 2
years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards this release.

The clear direction of the CEN/ISSS XFS Workshop, therefore, is the delivery of a new Release 3.0 specification based
on a C API. It will be delivered with the promise of the protection of technical investment for existing applications and
the design to safeguard future developments.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2000-10-18. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.0.

The CWA is published as a multi-part document, consisting of:

Part 1. Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference
Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.0 (see
CWA 13449) to Version 3.0 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Page 5
CWA 14050-9:2000

Part 18: Identification Card Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA)
- Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version
3.0 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a complementary
document, called Release Notes. The Release Notes contain clarifications and explanations on the CWA specifications,
which are not requiring functional changes. The current version of the Release Notes is available online from
http://lwww.cenorm.begiss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS makes
no warranty, express or implied, with respect to this document.

Revision History:

1.0 May 24, 1993 Initial release of APl and SPI specification

1.11 February 3, 1995 Separation of specification into separate documents for API/SPI and
service class definitions

2.00 November 11,1996 Update release encompassing the self-service environment

3.00 October 18, 2000 Addition of the reset command

UNICODE support

Addition of the command WFS_INF_TTU_KEY_DETAIL
Enhancement of the WFS_CMD_TTU_READ command
Addition of the events WFS_EXEE_TTU_FIELDWARNING,
WFS_EXEE_TTU_FIELDERROR, and WFS_EXEE_TTU_KEY

For a detailed description see CWA 14050-22
TTU Migration from Version 2.00 to Version 3.00, Revision 1.00,
October 18, 2000.

Page 6
CWA 14050-9:2000

1. Introduction

1.1 Background to Release 3.0

The CEN XFS Workshop is a continuation of the Banking Solution Vendors Council workshop and maintains a
technical commitment to the Win 32 API. However, the XFS Workshop has extended the franchise of multi vendor
software by encouraging the participation of both banks and vendors to take part in the deliberations of the creation of
an industry standard. This move towards opening the participation beyond the BSVC's original membership has been
very succesful with a current membership level of more than 20 companies.

The fundamental aims of the XFS Workshop are to promote a clear and unambiguous specification for both service
providers and application developers. This has been achieved to date by sub groups working electronically and quarterly
meetings.

The move from an XFS 2.0 specification to a 3.0 specification has been prompted by a series of factors. Initially, there
has been a technical imperative to extend the scope of the existing specification of the XFS Manager to include new
devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now over 2
years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards this release.

The clear direction of the XFS Workshop, therefore, is the delivery of a new Release 3.0 specification based on a C API.

It will be delivered with the promise of the protection of technical investment for existing applications and the design to
safeguard future developments.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of service
providers, but not all of them, and therefore are not included in the common API for basic or administration functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the
command is as similar as possible across all services, since a major objective of the Extensions for Financial Services is
to standardize command codes and structures for the broadest variety of services. For exampleWEBigxbeute

function, the commands to read data from various services are as similar as possible to each other in their syntax and
data structures.

In general, the specific command set for a service class is defined as the union of the sets of specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a subset
of the command set defined for the class.

There are three cases in which a service provider may receive a service-specific command that it does not support:

e The requested capability is defined for the class of service providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capahdttyaasidered to be
fundamental to the service. In this case, the service provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the service
provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
service provider does no operation and returns a successful completion to the application.

Page 7
CWA 14050-9:2000

e The requested capability is defined for the class of service providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported caabditgidered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenser to dispense coins; the service provider
recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

e The requested capabilitym®t defined for the class of service providers by the XFS specification. In this case, a
WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications maywW§&Sthetinfo and
WEFSAsyncGetinfo commands to inquire about the capabilities of the service they are about to use, and modify their
behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error returns to
make decisions as to how to use the service.

Page 8
CWA 14050-9:2000

2. Text Terminal Unit

This specification describes the functionality of the services provided by text terminal unit (TTU) services under XFS,
by defining the service-specific commands that can be issued, usif-BE&etinfo, WFSAsyncGetinfo,
WFSExecuteandWFSAsyncExecutefunctions.

This section describes the functions provided by a generic Text Terminal Unit (TTU) service. A Text Terminal Unit is a
text i/o device, which applies both to ATM operator panels and to displays incorporated in devices such as PIN pads and
printers. This service allows for the following categories of functions:

Forms oriented input and output
Direct display output

Keyboard input

LED settings and control

All position indexes are zero based, where column zero, row zero is the top-leftmost position.

If the device has no shift key, the WFS_CMD_TTU_READ_FORM and WFS_CMD_TTU_READ commands will
return only upper case letters. If the device has a shift key, these commands return upper and lower case letters as
governed by the user's use of the shift key.

Page 9
CWA 14050-9:2000

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Referenge
Revision 3.00, October 18, 2000

Page 10

CWA 14050-9:2000

4. Info Commands

4.1 WFS_INF_TTU_STATUS

Description

Input Param

Output Param

This command reports the full range of information available, including the information that is
provided by the service provider.

None.

LPWFSTTUSTATUS IpStatus;

typedef struct _wfs_ttu_status

WORD fwDevice;
WORD wKeyboard;
WORD wKeyLock;
WORD WLEDS[WFS_TTU_LEDS_MAX];
WORD wDisplaySizeX;
WORD wDisplaySizeY;
LPSTR IpszExtra;
}WFSTTUSTATUS, * LPWFSTTUSTATUS;
fwDevice
Specifies the state of the text terminal unit as one of the following flags:
Value Meaning
WFS_TTU_DEVONLINE The device is on-line (i.e., powered on and operable).
WFS_TTU_DEVOFFLINE The device is off-line (e.g., the operator has taken the device
offline by turning a switch or pulling out the device).
WFS_TTU_DEVPOWEROFF The device is powered off or physically not connected.
WFS_TTU_DEVBUSY The device is busy and unable to process an execute
command at this time.
WFS_TTU_DEVNODEVICE There is no device intended to be there; e.g. this type of self

service machine does not contain such a device or it is
internally not configured.
WFS_TTU_DEVHWERROR The device is inoperable due to a hardware error.
WFS_TTU_DEVUSERERROR The device is inoperable because a person is preventing
proper device operation.

wKeyboard

Specifies the state of the keyboard in the text terminal unit as one of the following flags:
Value Meaning

WFS_TTU_KBDON The keyboard is activated.

WFS_TTU_KBDOFF The keyboard is not activated.

WFS_TTU_KBDNA The keyboard is not available.

wKeyLock

Specifies the state of the keyboard lock of the text terminal unit as one of the following flags:
Value Meaning

WFS_TTU_KBDLOCKON The keyboard lock switch is activated.
WFS_TTU_KBDLOCKOFF The keyboard lock switch is not activated.
WFS_TTU_KBDLOCKNA The keyboard lock switch is not available.

WLEDs [WFS_TTU_LEDS_MAX]

Specifies the state of the LEDs. The maximum guidance light index is WFES_TTU_LEDS_MAX.
The number of available LEDs can be retrieved with the WFS_INF_TTU_CAPABILITIES info
command. All member elements in this array are specified as one of the following flags:

Value Meaning
WFS_TTU_LEDNA The status is not available.
WFS_TTU_LEDOFF The LED is turneaff.

WFS_TTU_LEDSLOWFLASH The LED iblinking slowly.

Page 11
CWA 14050-9:2000

WFS_TTU_LEDMEDIUMFLASH The LED idlinking medium frequency.
WFS_TTU_LEDQUICKFLASH The LED iblinking quickly.
WFS_TTU_LEDCONTINUOUS The light is turned aopntinuous (steady).

wDisplaySizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that can
be displayed).

wDisplaySizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be
displayed).

IpszExtra

Specifies a list of vendor-specific, or any other extended, information. The information is returned
as a series okey=value"strings so that it is easily extensible by service providers. Each string will
be null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present ipshExtraparameter
may not be device or vendor-independent.

4.2 WFS_INF_TTU_CAPABILITIES

Description This command is used to retrieve the capabilities of the text terminal unit.
Input Param None.

Output Param LPWFSTTUCAPS IpCaps;

typedef struct _wfs_ttu_caps

{

WORD wClass;
WORD fwType;
LPWFSTTURESOLUTION * IppResolutions;
WORD wWNumOfLEDs;
BOOL bKeyLock;
BOOL bDisplayLight;
BOOL bCursor;

BOOL bForms;
WORD fwCharSupport;
LPSTR IpszExtra;

} WESTTUCAPS, * LPWFSTTUCAPS;

wClass
Specifies the logical service class, value is:
WFS_SERVICE_CLASS TTU

fwType

Specifies the type of the text terminal unit as one of the following flags:

Value Meaning

WFS_TTU_FIXED The text terminal unit is a fixed device.
WFS_TTU_REMOVABLE The text terminal unit is a removable device.

IppResolutions

Pointer to a NULL terminated array of pointers WFSTTURESOLUTION structures. Specifies the
resolutions supported by the physical display device. (For a definition of WFSTTURESOLUTION
see command WFS_CMD_TTU_SET_RESOLUTION).

WNumOfLEDs
Specifies the number of LEDs available in this text terminal unit.

Page 12
CWA 14050-9:2000

bKeyLock
Specifies whether the text terminal unit has a key lock switch. The value can be either FALSE (not
available) or TRUE (available).

bDisplayLight
Specifies whether the text terminal unit has a display light. The value can be either FALSE (not
available) or TRUE (available).

bCursor
Specifies whether the text terminal unit display supports a cursor. The value can be either FALSE
(not available) or TRUE (available).

bForms
Specifies whether the text terminal unit service supports forms oriented input and output. The value
can be either FALSE (not available) or TRUE (available).

fwCharSupport
One or more flags specifying the Character Sets, in addition to single byte ASCII, supported by the
service provider:

Value Meaning
WES_TTU_ASCII ASCII is supported for XFS forms.
WES_TTU_UNICODE UNICODE is supported for XFS forms.

ForfwCharSupporta service provider can support ONLY ASCII forms or can support BOTH
ASCII and UNICODE forms. A service provider can not support UNICODE forms without also
supporting ASCII forms.

IpszExtra

Specifies a list of vendor-specific, or any other extended, information. The information is returned
as a series okey=value"strings so that it is easily extensible by service providers. Each string will
be null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present ipghExtraparameter
may not be device or vendor-independent.

4.3 WFS_INF_TTU_FORM_LIST

Description This command is used to retrieve the list of forms available on the device.
Input Param None.
Output Param LPSTR IpszFormList;

IpszFormList

Pointer to a list of null-terminated form names, with the final name terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

Page 13
CWA 14050-9:2000

4.4 WFS_INF_TTU_QUERY_FORM

Description This command is used to retrieve details of the definition of a specified form.
Input Param LPSTR IpszFormName;

IpszFormName

Points to the null-terminated form name on which to retrieve detalils.

Output Param LPWFSTTUFRMHEADER IpFrmHeader;

typedef struct _wfs_ttu_frm_header

{

LPSTR IpszFormName;

WORD wWidth;

WORD wHeight;

WORD wVersionMajor;

WORD wVersionMinor;

WORD fwCharSupport;

LPSTR IpszFields;

} WFSTTUFRMHEADER, * LPWFSTTUFRMHEADER;
IpszFormName
Specifies the null-terminated name of the form.
wWidth

Specifies the width of the form in columns.

wHeight
Specifies the height of the form in rows.

wVersionMajor
Specifies the major version of the form.

wVersionMinor
Specifies the minor version of the form.

fwCharSupport

A single flag indicating whether the form is encoded in ASCII or UNICODE:

Value Meaning

WFS_TTU_ASCII XFS form is encoded in ASCII.
WFS_TTU_UNICODE XFS form is encoded in UNICODE.

IpszFields

Pointer to a list of null-terminated field names, with the final name terminating with two null
characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form is invalid.

Comments None.

Page 14
CWA 14050-9:2000

4.5 WFS_INF_TTU_QUERY_FIELD

Description This command is used to retrieve details of the definition of a single or all fields on a specified form.

Input Param LPWFSTTUQUERYFIELD IpQueryField;
typedef struct _wfs_ttu_query_field

LPSTR IpszFormName;
LPSTR IpszFieldName;
} WFSTTUQUERYFIELD, * LPWFSTTUQUERYFIELD;

IpszFormName
Pointer to the null-terminated form name.

IpszFieldName
Pointer to the null-terminated name of the field about which to retrieve details. If this value is a
NULL pointer, then retrieve details for all fields on the form.

Output Param LPWFSTTUFRMFIELD * IppFields;

IppFields
Pointer to a null-terminated array of pointers to field definition structures:

typedef struct _wfs_ttu_frm_field

{

LPSTR IpszFieldName;
WORD fwType;
WORD fwClass;
WORD fwAccess;
WORD fwOverflow;
LPSTR IpszFormat;

} WESTTUFRMFIELD, * LPWFSTTUFRMFIELD;

IpszFieldName
Pointer to the null-terminated field name.

fwType

Specifies the type of field and can be one of the following:
Value Meaning
WFS_TTU_FIELDTEXT A text field.

WFS_TTU_FIELDINVISIBLE An invisible text field.
WFS_TTU_FIELDPASSWORD A password field, input is echoed as *'.

fwClass
Specifies the class of the field and can be one of the following:
Value Meaning
WFS_TTU_CLASSSTATIC The field data cannot be set by the application.

WFS_TTU_CLASSOPTIONAL The field data can be set by the application.
WFS_TTU_CLASSREQUIRED The field data must be set by the application.

fwAccess
Specifies whether the field is to be used for input, output, or both and can be a combination of the
following bit-flags:

Value Meaning
WFS_TTU_ACCESSREAD The field is used for input from the physical device.
WFS_TTU_ACCESSWRITE The field is used for output to the physical device.
fwOverflow
Specifies how an overflow of field data should be handled and can be one of the following:
Value Meaning

WFS_TTU_OVFTERMINATE Return an error and terminate display of the form.
WFS_TTU_OVFTRUNCATE Truncate the field data to fit in the field.

Page 15
CWA 14050-9:2000

WFS_TTU_OVFOVERWRITE Print the field data beyond the extents of the field
boundary.

IpszFormat
Format string as defined in the form for this field.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning

WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.

WFS_ERR_TTU_FORMINVALID The specified form is invalid.

WFS_ERR_TTU_FIELDNOTFOUND The specified field cannot be found.

WFS_ERR_TTU_FIELDINVALID The specified field is invalid.
Comments None.

4.6 WFS_INF_TTU_KEY_DETAIL

Description This command returns information about the Keys (buttons) supported by the device.

This command should be issued to determine which Keys are available.

Input Param None.
Output Param LPWFSTTUKEYDETAIL IpKeyDetail;

typedef struct _wfs_ttu_key_detail

LPSTR IpszKeys;
LPWSTR IpwszUNICODEKeys;
LPWORD IpwCommandKeys;

} WESTTUKEYDETAIL, * LPWFSTTUKEYDETAIL;

IpszKeys

String which holds the printable characters (numeric and alphanumeric keys) on the Text Terminal
Unit, e.g. “0123456789ABCabg " if those text terminal input keys are present. This string is a
NULL pointer if capabilityfwCharSupporequals WFS_TTU_UNICODE or if no keys of this type

are present on the device.

IpwszUNICODEKeys

String which holds the numeric and alphanumeric keys on the Text Terminal Ulstikeey<ut
in UNICODE format. This string is a NULL pointer if capabilftyCharSupporequals
WES_TTU_ASCII or if no keys of this type are present on the device.

IpwCommandKeys
Array of command keys on the Text Terminal Unit. The array is terminated with a zero value. This
array is a NULL pointer if no keys of this type are present on the device.

WFS_TTU_CK_ENTER
WFS_TTU_CK_CANCEL
WFS_TTU_CK_CLEAR
WFS_TTU_CK_BACKSPACE
WFS_TTU_CK_HELP
WFS_TTU_CK_00
WFS_TTU_CK_000
WFS_TTU_CK_ARROWUP

Page 16
CWA 14050-9:2000

WFS_TTU_CK_ARROWDOWN
WFS_TTU_CK_ARROWLEFT
WFS_TTU_CK_ARROWRIGHT

The following values may be used as vendor dependent keys.
WFS_TTU_CK_OEM1
WFS_TTU_CK_OEM2
WFS_TTU_CK_OEM3
WFS_TTU_CK_OEM4
WFS_TTU_CK_OEMS5
WFS_TTU_CK_OEM6
WFS_TTU_CK_OEM7
WFS_TTU_CK_OEM8
WFS_TTU_CK_OEM9
WFS_TTU_CK_OEM10
WFS_TTU_CK_OEM11
WFS_TTU_CK_OEM12

The following keys are used for Function Descriptor Keys.
WFS_TTU_CK_FDKO1
WFS_TTU_CK_FDKO02
WFS_TTU_CK_FDKO03
WFS_TTU_CK_FDKO04
WFS_TTU_CK_FDKO05
WFS_TTU_CK_FDKO06
WFS_TTU_CK_FDKO07
WFS_TTU_CK_FDKO08
WFS_TTU_CK_FDK09
WFS_TTU_CK_FDK10
WFS_TTU_CK_FDK11
WFS_TTU_CK_FDK12
WFS_TTU_CK_FDK13
WFS_TTU_CK_FDK14
WFS_TTU_CK_FDK15
WFS_TTU_CK_FDK16
WFS_TTU_CK_FDK17
WFS_TTU_CK_FDK18
WFS_TTU_CK_FDK19
WFS_TTU_CK_FDK20
WFS_TTU_CK_FDK21

Error Codes

Comments

WFS_TTU_CK_FDK22
WFS_TTU_CK_FDK23
WFS_TTU_CK_FDK24
WFS_TTU_CK_FDK25
WFS_TTU_CK_FDK26
WFS_TTU_CK_FDK27
WFS_TTU_CK_FDK28
WFS_TTU_CK_FDK29
WFS_TTU_CK_FDK30
WFS_TTU_CK_FDK31
WFS_TTU_CK_FDK32

Page 17
CWA 14050-9:2000

Only the generic error codes defined in [Ref. 1] can be generated by this command.

None.

Page 18
CWA 14050-9:2000

5. Execute Commands

5.1 WFS_CMD_TTU_BEEP

Description This command is used to beep at the text terminal unit.
Input Param LPWORD IpwBeep;
IpwBeep

Specifies whether the beeper should be turned on or off. Specified as one of the following flags of
type A and B, or as WFS_TTU_BEEPCONTINUOUS in combination with one of the flags of type

B:

Value Meaning Type
WFS_TTU_BEEPOFF The beeper is turned off. A
WFS_TTU_BEEPKEYPRESS The beeper sounds a key click signal. B
WFS_TTU_BEEPEXCLAMATION The beeper sounds a exclamation signal. B
WES_TTU_BEEPWARNING The beeper sounds a warning signal. B
WFS_TTU_BEEPERROR The beeper sounds a error signal. B
WFS_TTU_BEEPCRITICAL The beeper sounds a critical error signal. B
WFS_TTU_BEEPCONTINUOUS The beeper sound is turned on C

continuously.

Output Param None.
Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.
Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.2 WFS_CMD_TTU_CLEARSCREEN

Description This command clears the specified area of the text terminal unit screen. The cursor is positioned to the
upper left corner of the cleared area.

Input Param LPWFSTTUCLEARSCREEN IpClearScreen;

struct _wfs_ttu_clear_screen

{

WORD wPositionX;

WORD wPositionY;

WORD wWidth;

WORD wHeight;

} WFSTTUCLEARSCREEN, * LPWFSTTUCLEARSCREEN;
wPositionX
Specifies the horizontal position of the area to be cleared.
wPositionY
Specifies the vertical position of the area to be cleared.
wWidth

Specifies the width of the area to be cleared. This value must be positive.

wHeight
Specifies the height of the area to be cleared. This value must be positive.

Output Param None.

Error Codes
Events

Comments

Page 19
CWA 14050-9:2000

Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

If the input parameter is a NULL pointer, the whole screen will be cleared.

5.3 WFS_CMD_TTU_DISPLIGHT

Description

Input Param

Output Param
Error Codes
Events

Comments

This command is used to switch the lighting of the text terminal unit on or off.

LPWFSTTUDISPLIGHT IpDispLight;
typedef struct _wfs_ttu_disp_light

{
BOOL bMode;
} WFSTTUDISPLIGHT, * LPWFSTTUDISPLIGHT;

bMode
Specifies whether the lighting of the text terminal unit is switched on (TRUE) or off (FALSE).

None.
Only the generic error codes defined in [Ref. 1] can be generated by this command.
Only the generic events defined in [Ref. 1] can be generated by this command.

None.

5.4 WFS_CMD_TTU_SET_LED

Description

Input Param

This command is used to set the status of the LEDs.
LPWFSTTUSETLEDS IpSetLEDs;

typedef struct _wfs_ttu_set_leds

WORD WLED;
WORD fwCommand;
} WFSTTUSETLEDS, * LPWFSTTUSETLEDS;

WLED

Specifies the index of the LED to set.

fwCommand

Specifies the state of the LED, as one of the following flags:
Value Meaning
WFS_TTU_LEDOFF The LED is turned off.

WFS_TTU_LEDSLOWFLASH The LED is set to flash slowly.
WFS_TTU_LEDMEDIUMFLASH The LED is blinking medium frequency.
WFS_TTU_LEDQUICKFLASH The LED is set to flash quickly.
WFS_TTU_LEDCONTINUOUS The LED is turned on continuously (steady).

Output Param None.

Error Codes

In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated

by this command:

Value Meaning

WFS_ERR_TTU_INVALIDLED An attempt to set a LED to a new value was invalid because

the LED does not exist.

Page 20
CWA 14050-9:2000

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.5 WFS_CMD_TTU_SET_RESOLUTION

Description This command is used to set the resolution of the display.

Input Param LPWFSTTURESOLUTION IpResolution;

typedef struct _wfs_ttu_resolution

{

WORD wSizeX;

WORD wSizeY;

} WFSTTURESOLUTION, * LPWFSTTURESOLUTION;

wSizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that can
be displayed)

wSizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be
displayed)

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning

WFS_ERR _TTU _RESNOTSUPP The specified resolution is not supported by the display.
Events Only the generic events defined in [Ref. 1] can be generated by this command.
Comments None.

5.6 WFS_CMD_TTU_WRITE_FORM

Description This command is used to display a form by merging the supplied variable field data with the defined
form and field data specified in the form.

Input Param LPWFSTTUDISPLAYFORM IpWriteform;
typedef struct _wfs_ttu_write_form

LPSTR IpszFormName;
BOOL bClearScreen;
LPSTR IpszFields;

LPWSTR IpszUNICODEFields;
} WESTTUWRITEFORM, * LPWFSTTUWRITEFORM;

IpszFormName
Pointer to the null-terminated form name.

bClearScreen
Specifies whether the screen is cleared before displaying the form (TRUE) or not (FALSE).

IpszFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the entire field string terminating with two null characters, e.g. Field1=123/0Field2=456/0/0.

Output Param

Error Codes

Events

Comments

Page 21
CWA 14050-9:2000

The <FieldValue> stands for a string containing all the printable characters (numeric and
alphanumeric) to display on the text terminal unit key pad for this field.

IpszUNICODEFields

Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters, e.g.
Field1=123/0Field2=456/0/0 (UNICODE). The <FieldValue> stands for a UNICODE string
containing all the printable characters (numeric and alphanumeric) to display on the text terminal
unit key pad for this field.

Note: ThelpszUNICODEFielddield should only be used if the form is encoded in UNICODE
representation. This can be determined with the WFS_TTU_INF_QUERY_FORM command. The
use oflpszFieldsandipszUNICODEFielddields is mutually exclusive.

None.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form definition cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form definition is invalid.

WFS_ERR_TTU_MEDIAOVERFLOW The form overflowed the media.

WFS_ERR_TTU_FIELDSPECFAILURE The syntax of thezFieldsmember is invalid.

WFS_ERR_TTU_CHARSETDATA Character set(s) supported by service provider is
inconsistent with use dpszFieldsor
IpszUNICODEFielddields.

WFS_ERR_TTU_FIELDERROR An error occurred while processing a field, causing
termination of the display request

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS_EXEE_TTU_FIELDERROR A fatal error occurred while processing a field.
WFS_EXEE_TTU_FIELDWARNING A non-fatal error occurred while processing a field.

None.

5.7 WFS_CMD_TTU_READ_FORM

Description

Input Param

This command is used to read data from input fields on the specified form.

LPWFSTTUREADFORM IpReadForm;

typedef struct _wfs_ttu_read_form

{

LPSTR IpszFormName;

LPSTR IpszFieldNames;

} WFSTTUREADFORM, * LPWFSTTUREADFORM,;

IpszFormName
Pointer to the null-terminated name of the form.

IpszFieldNames

Pointer to a list of null-terminated field names from which to read input data, with the final name
terminating with two null characters. If this value is a NULL pointer, then data is read from all input
fields on the form.

Output Param LPWFSTTUREADFORMOUT IpReadFormOut;

typedef struct _wfs_ttu_read_form_out

{
LPSTR IpszFields;

Page 22
CWA 14050-9:2000

LPWSTR IpszUNICODEFields;
} WESTTUREADFORMOUT, * LPWFSTTUREADFORMOUT;

IpszFields

Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the final string terminating with two null characters, e.g. Field1=123/0Field2=456/0/0. The
<FieldValue> stands for a string containing all the printable characters (numeric and alphanumeric)
read from the text terminal unit key pad for this field. This parameter is a NULL pointer if the
capabilityfwCharSupporequals WFS_TTU_UNICODE.

IpszUNICODEFields

Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters, e.g.
Field1=123/0Field2=456/0/0 (UNICODE). The <FieldValue> stands for a UNICODE string
containing all the printable characters (numeric and alphanumeric) read from the text terminal unit
key pad for this field. This parameter is a NULL pointer if the capaliGharSupporequals
WFS_TTU_ASCII.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning

WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.

WFS_ERR_TTU_FORMINVALID The specified form definition is invalid.

WFS _ERR _TTU_FIELDSPECFAILURE The syntax of thezFieldNamesnember is invalid.

WFS_ERR_TTU_KEYCANCELED The read operation was terminated by pressing the
<CANCEL>-key.

WFS_ERR_TTU_FIELDERROR An error occurred while processing a field, causing
termination of the read request.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning
WFS_EXEE_TTU_FIELDERROR A fatal error occurred while processing a field.

WFS_EXEE_TTU_FIELDWARNING A non-fatal error occurred while processing a field..

Comments None.

5.8 WFS_CMD_TTU_WRITE

Description This command displays the specified text on the display of the text terminal unit . The specified text
may include the control characters CR (Carriage Return) and LF (Line Feed). The control characters
can be included in the text as CR, or LF, or CR LF, or LF CR and all combinations will perform the
function of relocating the cursor position to the left hand side of the display on the next line down. If
the text will overwrite the display area then the display will scroll.

Input Param LPWFSTTUWRITE IpWrite;
typedef struct _wfs_ttu_write

{

WORD fwMode;

SHORT wPosX;

SHORT wPosY;

WORD fwTextAttr;
LPSTR IpsText;

LPWSTR IpsUNICODEText;

} WESTTUWRITE, * LPWFSTTUWRITE;

Page 23
CWA 14050-9:2000

fwMode
Specifies whether the position of the output is absolute or relative to the current cursor position.
Possible values are:

Value Meaning

WFS_TTU_POSRELATIVE The output is positioned relative to the current cursor
position.

WFS_TTU_POSABSOLUTE The output is positioned absolute at the position specified in
wPosXandwPosY

wPosX

If fvMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute horizontal position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a horizontal offset relative to the
current cursor position as a zero (0) based value.

wPosY

If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute vertical position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a vertical offset relative to the current
cursor position as a zero (0) based value.

fwTextAttr

Specifies the text attributes used for displaying the text as a combination of the following flags. If
none of the following attribute flags are selected then the text will be displayed as TEXTNORMAL.
Value Meaning

WFS_TTU_TEXTUNDERLINE The displayed text will be underlined.

WFS_TTU_TEXTINVERTED The displayed text will be inverted.
WFS_TTU_TEXTFLASH The displayed text will be flashing.
IpsText

Specifies the text that will be displayed.

IpsUNICODEText
Specifies the UNICODE text that will be displayed.

Note:lpsTextandlpsUNICODETexare mutually exclusive.

Output Param None.

Error Codes

Events

Comments

In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning

WFS_ERR_TTU_CHARSETDATA Character set(s) supported by service provider is
inconsistent with use dpsTextor IpsUNICODEText
fields.

Only the generic events defined in [Ref. 1] can be generated by this command.

None.

5.9 WFS_CMD_TTU_READ

Description

This command activates the keyboard of the text terminal unit for input of the specified number of
characters. Depending on the specified flush mode the input buffer is cleared. During this command,
pressing an active key results ina WFS_EXEE_TTU_KEY event containing the key details. On
completion of the command (when the maximum number of keys have been pressed or a terminator
key is pressed), the entered string, as interpreted by the service provider, is returned. The service
provider takes command keys into account when interpreting the data.

Page 24

CWA 14050-9:2000

Input Param

LPWFSTTUREAD IpRead;

typedef struct _wfs_ttu_read

{

WORD wNumOfChars;

WORD fwMode;

SHORT wPosX;

SHORT wPosY;

WORD fwEchoMode;

WORD fwEchoAttr;

BOOL bCursor;

BOOL bFlush;

BOOL bAutoENd;

LPSTR IpszActiveKeys;

LPWSTR IpwszActiveUNICODEKeys;
LPWORD IpwActiveCommandKeys;
LPWORD IpwTerminateCommandKeys;

} WESTTUREAD, * LPWFSTTUREAD;

wNumOfChars

Specifies the number of printable characters (numeric and alphanumeric keys) that will be read from
the text terminal unit key pad. All command keys like WFS_TTU_CK_ENTER,
WFS_TTU_CK_FDKO1 will not be counted.

fwMode

Specifies where the cursor is positioned for the read operation. Possible values are:

Value Meaning

WFS_TTU_POSRELATIVE The cursor is positioned relative to the current cursor
position.

WFS_TTU_POSABSOLUTE The cursor is positioned absolute at the position specified in
wPosXandwPosY

wPosX

If fvMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute horizontal position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a horizontal offset relative to the
current cursor position as a zero (0) based value.

wPosY

If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute vertical position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a vertical offset relative to the current
cursor position as a zero (0) based value.

fwEchoMode

Specifies how the user input is echoed to the screen as one of the following flags:
Value Meaning

WFS_TTU_ECHOTEXT The user input is echoed to the screen.

WFS_TTU_ECHOINVISIBLE The user input is not echoed to the screen.

WFS_TTU_ECHOPASSWORD The keys entered by the user are echoed as the replace
character on the screen.

fwEchoAttr

Specifies the text attributes with which the user input is echoed to the screen as a combination of the

following flags. If none of the following attribute flags are selected then the text will be displayed as

TEXTNORMAL.

Value Meaning
WFS_TTU_TEXTUNDERLINE The displayed text will be underlined.
WFS_TTU_TEXTINVERTED The displayed text will be inverted.
WFS_TTU_TEXTFLASH The displayed text will be flashing.
bCursor

Specifies whether the cursor is visible (TRUE) or invisible (FALSE).

Page 25
CWA 14050-9:2000

bFlush
Specifies whether the keyboard input buffer is cleared before allowing for user input (TRUE) or not
(FALSE).

bAutoENnd
Specifies whether the command input is automatically ended by the Service Provider if the
maximum number of printable characters as specifiedwlithmOfCharss entered.

IpszActiveKeys

String which specifies the numeric and alphanumeric keys on the Text Terminal Unit, e.qg.
“12ABab”, to be active during the execution of the command. Devices having a shift key interpret
this parameter differently from those that do not have a shift key. For devices having a shift key,
specifying only the upper case of a particular letter enables both upper and lower case of that key,
but the device converts lower case letters to upper case in the output parameter. To enable both
upper and lower case keys, and have both upper and lower case letters returned, specify both the
upper and lower case of the letter (e.g. "12AaBb"). For devices not having a shift key, specifying
either the upper case only (e.g. "12AB"), or specifying both the upper and lower case of a particular
letter (e.g. "12AaBb"), enables that key and causes the device to return the upper case of the letter
in the output parameter. For both types of device, specifying only lower case letters (e.g. "12ab")
produces a key invalid error. This parameter is a NULL pointer if capafwCharSupporequals
WFS_TTU_UNICODE or if no keys of this type are active keys.

IpwszActiveUNICODEKeys

String which specifies the numeric and alphanumeric keys on the Text Terminal Unit, e.qg.
“12ABab” (UNICODE), to be active during the execution of the command. Devices having a shift
key interpret this parameter differently from those that do not have a shift key. For devices having a
shift key, specifying only the upper case of a particular letter enables both upper and lower case of
that key, but the device converts lower case letters to upper case in the output parameter. To enable
both upper and lower case keys, and have both upper and lower case letters returned, specify both
the upper and lower case of the letter (e.g. "12AaBb"). For devices not having a shift key,
specifying either the upper case only (e.g. "12AB"), or specifying both the upper and lower case of
a particular letter (e.g. "12AaBb"), enables that key and causes the device to return the upper case
of the letter in the output parameter. For both types of device, specifying only lower case letters
(e.g. "12ab") produces a key invalid error. This parameter is a NULL pointer if capability
fwCharSupporequals WFES_TTU_ASCII or if no keys of this type are active keys.

[pwActiveCommandKeys

Array specifying the command keys which are active during the execution of the command. The
array is terminated with a zero value and this array is a NULL pointer if no keys of this type are
active keys.

IpwTerminateCommandKeys

Array specifying the command keys which must terminate the execution of the command. The array
is terminated with a zero value and this array is a NULL pointer if no keys of this type are terminate
keys.

Output Param LPWFSTTUREADIN IpReadln;
typedef struct _wfs_ttu_read_in

LPSTR Ipszinput;
LPWSTR IpszUNICODEInput;
} WFSTTUREADIN, * LPWFSTTUREADIN;

Ipszinput

Specifies a zero terminated string containing all the printable characters (numeric and
alphanumeric) read from the text terminal unit key pad. This parameter is a NULL pointer if the
capabilityfwCharSupporequals WFS_TTU_UNICODE.

Page 26

CWA 14050-9:2000

Error Codes

Events

Comments

IpszUNICODEInput

Specifies a zero terminated string containing all the printable characters (numeric and alphanumeric)
read from the text terminal unit key pad. This parameter is a NULL pointer if the capability
fwCharSupporequals WFS_TTU_ASCII.

Note: The following keys are not printable and will not be returned in the output parameter
Ipszinputor IpszUNICODEInputbut they may effect the buffer if active:

WFS_TTU_CK _CLEAR Will clear the buffer. The number of printable characters pressed
will be set to zero.

WFS_TTU_CK BACKSPACE Will cause the last printable character in the buffer to be
removed. The number of printable characters pressed will be
reduced by one, unless the number of printable characters
pressed was zero.

WFS_TTU_CK 00 Will add a double zero ‘00’ string to the buffer. The number of
printable characters pressed will be increased by two.
WFS_TTU_CK 000 will add a triple zero ‘000’ string to the buffer. The number of

printable characters pressed will be increased by three.

In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:
Value Meaning
WFS_ERR_TTU_KEYINVALID At least one of the specified keys is invalid.
WFS_ERR _TTU KEYNOTSUPPORTED At least one of the specified keys is not supported by
the service provider.
WFS_ERR_TTU_NOACTIVEKEYS There are no active keys specified.

In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:
Value Meaning

WFS_EXEE_TTU_KEY An active key on the Text Terminal Unit has been
pressed. Note: A command key press will not result in a
character being displayed.

None.

5.10 WFS_CMD_TTU _RESET

Description
Input Param
Output Param
Error Codes
Events

Comments

Sends a service reset to the service provider. This command clears the screen and the keyboard buffer.
None

None.

Only the generic error codes defined in [Ref. 1] can be generated by this command.

Only the generic events defined in [Ref. 1] can be generated by this command.

This command is used by an application control program to cause a device to reset itself to a known
good condition.

Page 27
CWA 14050-9:2000

6. Events

6.1 WFS_EXEE_TTU_FIELDERROR

Description This event specifies that a fatal error has occurred while processing a field.

Event Param LPWFSTTUFIELDFAIL IpFieldFail;

typedef struct _wfs_ttu_field_failure

LPSTR IpszFormName;
LPSTR IpszFieldName;
WORD wFailure;

} WESTTUFIELDFAIL, * LPWFSTTUFIELDFAIL;
IpszFormName
Points to the null-terminated form name.

IpszFieldName
Points to the null-terminated field name.

wFailure
Specifies the type of failure and can be one of the following:
Value Meaning

WFS_TTU_FIELDREQUIRED The specified fieldustbe supplied by the application.

WFS_TTU_FIELDSTATICOVWR The specified field is static and thaanotbe overwritten by
the application.

WFS_TTU_FIELDOVERFLOW The value supplied for the specified fields is too long.

WFS_TTU_FIELDNOTFOUND The specified field does not exist.

WFS_TTU_FIELDNOTREAD The specified field is not an input field.

WFS_TTU_FIELDNOTWRITE An attempt was made to write to an input field.

WFS_TTU_FIELDTYPENOTSUPPORTED The form field type is not supported with
device.

WFS_TTU_CHARSETFORM Service provider does not support character set specified in
form.

Comments None.

6.2 WFS_EXEE_TTU_FIELDWARNING

Description This event is used to specify that a non-fatal error has occurred while processing a field.

Event Param LPWFSTTUFIELDFAIL IpFieldFail;
as defined in the section describing WFS_EXEE_TTU_FIELDERROR.

Comments None.

6.3 WFS_EXEE_TTU_KEY

Description This event specifies that any active key has been pressed at the TTU during the
WFS_CMD_TTU_READ command. In addition to giving the application more details about
individual key presses this information may also be used if the device has no internal display unit and
the application has to manage the display of the entered digits.

Page 28
CWA 14050-9:2000

Event Param LPWFSTTUKEY IpKey;
typedef struct _wfs_ttu_key

{

CHAR cKey;

WORD WUNICODEKEey;
WORD wCommandKey;

} WESTTUKEY, * LPWFSTTUKEY;

cKey

On a numeric or alphanumeric key press this parameter holds the value of the key pressed. This
value is WFS_TTU_NOKEY if no numeric or alphanumeric key was pressed or if capability
fwCharSupporequals WFS_TTU_UNICODE.

wUNICODEKey

On a numeric or alphanumeric key press this parameter holds the value of the key pressed in
UNICODE format. This value is WES_TTU_NOKEY if no numeric or alphanumeric key was
pressed or if capabilitvCharSupporequals WFS_TTU_ASCII.

wCommandKey
On a Command key press this parameter holds the value of the Command key pressed, e.g.
WFS_TTU_CK_ENTER. This value is WFS_TTU_NOKEY when no command key was pressed.

Note: Only one of the parametaisey, WUNICODEKeywCommandKegan have the value of a
valid key, the others must be setto WFS_TTU_NOKEY.

Comments None.

Page 29
CWA 14050-9:2000

7. Form and Field Definitions

This section outlines the format of the definitions of forms, the fields within them, and the media on which they are
printed.

7.1 Definition Syntax

The syntactic rules for form, field and media definitions are as follows:

White space space, tab

Line continuation backslash (\)

Line termination CR, LF, CRILF; line termination ends a “keyword section”
(a keyword and its value[s])

Keywords must be all upper case

Names (field/media/font names) any case; case is preserved;

service providers are case sensitive

Strings all strings must be enclosed in double quote characters (*);
standard C escape sequences are allowed.

Comments start with two forward slashes (//), end at line termination

Other notes:

If a keyword is present, all its values must be specified; default values are used only if the keyword is absent.

Values that are character strings are marked with asterisks in the definitions below, and must be quoted as specified
above.

Fields are processed in the sequence they are defined in the form.
The order of attributes within a form is not mandatory; the attributes may be defined in any order.

All forms can be represented using either ISO 646 (ANSI) or UNICODE character encoding. If the UNICODE
representation is used then all Names and Strings are restricted to an internal representation of ISO 646 (ANSI)
characters. Only the INITIALVALUE and FORMAT keyword values can have double byte values outside of the
ISO 646 (ANSI) character set.

If forms character encoding is UNICODE then, consistent with the UNICODE standard, the file prefix must be in
little endian (XFFFE) or big endian (XFEFF) notation, such that UNICODE encoding is recognized.

7.2 XFS form/media definition files in multi-vendor environments

Although for most Service Providers directory location and extension of XFS form/media definition files are
configurable through the registry, the capabilities of Service Providers and or actual hardware may vary. Therefore the
following considerations should be taken into account when applications use XFS form definition files with the purpose
of running in a multi-vendor environment:

Physical display area dimensions may vary from one text terminal to another

Just-in-time form loading may not be supported by all Service Providers, which makes it impossible to create
dynamic form files just before displaying them (which in return means that only the display data of the forms can be
changed, not the -layout data such as field positions)

Some form/media definition keywords may not be supported due to limitations of the hardware or software

Page 30

CWA 14050-9:2000

7.3 Form Definition 1

XFSFORM formname*
BEGIN
(required) SIZE width, Width of form
height Height of form
VERSION major, Major version number
minor, Minor version number
date*, Creation/modification date
author* Author of form
(required) LANGUAGE languagelD | Language used in this form — a 16 bit value (LANGID)
which is a combination of a primary (10 bits) and a
secondary (6 bits) language ID (This is the standard
language ID in the Win32 API; standard macros support
construction and decomposition of this composite 1D)
COPYRIGHT copyright* Copyright entry
TITLE title* Title of form
COMMENT comment* Comment section
[XFSFIELD fieldname* One field definition (as defined in the next section) for each
field in the form
BEGIN
END]
END

1 Attributes are not required in any mandatory order within a Form Definition.

Page 31
CWA 14050-9:2000

7.4 Field Definition 2

XFSFIELD fieldname

*

BEGIN

(required) POSITION X, Horizontal position (relative to left side of form)
y Vertical position (relative to top of form)

(required) SIZE width, Field width
height Field height

TYPE fieldtype Type of field:

TEXT (default)

INVISIBLE

PASSWORD (contents is echoed with *’)

CLASS class Field class

OPTIONAL (default)
STATIC
REQUIRED

KEYS keys Accepted input key types:
NUMERIC
HEXADECIMAL
ALPHANUMERIC

ACCESS access Access rights of field
WRITE (default)
READ
READWRITE

OVERFLOW overflow Action on field overflow:
TERMINATE (default)
TRUNCATE
OVERWRITE

STYLE style Display attributes as a combination of the following,
ORed together using the "|" operator:

NORMAL (default)

UNDER (single underline)

INVERTED

FLASHING

HORIZONTAL Justify Horizontal alignment of field contents
LEFT (default)

RIGHT

CENTER

FORMAT formatstri | This is an application defined input field describing how
ng* the application should format the data. This may be
interpreted by the service provider.

INITIALVALUE value* Initial value.

END

2 Attributes are not required in any mandatory order within a Field Definition.

Page 32
CWA 14050-9:2000

8. C - Header file

/ * F*kkkkkkk * Fkkkkkkk *

* *

* xfsttu.h XFS - definitions *
for the Text Terminal Unit - services *

* X
*

* Version 3.00 (10/18/00) *

*
*

* Fkkkkkkk * *kkkkk * * /

#ifndef __INC_XFSTTU__H
#define __ INC_XFSTTU__H

#ifdef __cplusplus

extern "C" {

#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSTTUCAPS.wClass */

#define WFS_SERVICE_CLASS_TTU @)

#define WFS SERVICE CLASS _NAME_TTU "TTU"

#define WFS_SERVICE_CLASS_VERSION_TTU (0x0003)

#define TTU_SERVICE_OFFSET (WFS_SERVICE_CLASS_TTU * 100)
/* TTU Info Commands */

#define WFS_INF_TTU_STATUS (TTU_SERVICE_OFFSET + 1)
#define WFS INF TTU CAPABILITIES (TTU_SERVICE_OFFSET + 2)
#define WFS_INF_TTU_FORM_LIST (TTU_SERVICE_OFFSET + 3)
#define WFS_INF_TTU_QUERY_FORM (TTU_SERVICE_OFFSET + 4)
#define WFS_INF_TTU_QUERY_FIELD (TTU_SERVICE_OFFSET + 5)
#define WFS_INF_TTU_KEY_DETAIL (TTU_SERVICE_OFFSET + 6)

/* TTU Command Verbs */

#define WFS_CMD_TTU_BEEP (TTU_SERVICE_OFFSET + 1)
#define WFS CMD TTU CLEARSCREEN (TTU_SERVICE_OFFSET + 2)
#define WFS CMD TTU _DISPLIGHT (TTU_SERVICE_OFFSET + 3)
#define WFS CMD TTU SET LED (TTU_SERVICE_OFFSET + 4)
#define WFS CMD TTU SET RESOLUTION (TTU_SERVICE_OFFSET + 5)
#define WFS_CMD_TTU_WRITE_FORM (TTU_SERVICE_OFFSET + 6)
#define WFS_CMD_TTU_READ_FORM (TTU_SERVICE_OFFSET + 7)
#define WFS_CMD_TTU_WRITE (TTU_SERVICE_OFFSET+ 8)
#define WFS CMD TTU READ (TTU_SERVICE_OFFSET + 9)
#define WFS_CMD_TTU_RESET (TTU_SERVICE_OFFSET + 10)

/* TTU Messages */

#define WFS_EXEE_TTU_FIELDERROR (TTU_SERVICE_OFFSET + 1)
#define WFS_EXEE_TTU_FIELDWARNING (TTU_SERVICE_OFFSET + 2)
#define WFS_EXEE_TTU_KEY (TTU_SERVICE_OFFSET + 3)

/* Values of WFSTTUSTATUS.fwDevice */

#define WFS_TTU_DEVONLINE WFS_STAT_DEVONLINE

#define WFS_TTU_DEVOFFLINE WFS_STAT_DEVOFFLINE

#define WFS_TTU_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_TTU_DEVBUSY WFS_STAT_DEVBUSY

#define WFS_TTU_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_TTU_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_TTU_DEVUSERERROR WFS_STAT_DEVUSERERROR

/* Values of WFSTTUSTATUS.wKeyboard */
#define WFS_TTU_KBDNA (0)
#define WFS_TTU_KBDON (1)

#define WFS_TTU_KBDOFF 2)

/* Values of WFSTTUSTATUS.wKeyLock */

#define WFS_TTU_KBDLOCKNA 0)

#define WFS_TTU_KBDLOCKON (1)

#define WFS_TTU_KBDLOCKOFF (2)
#define WFS_TTU_LEDS_MAX (8)

/* Values of WFSTTUSTATUS.fwWLEDs */

#define WFS_TTU_LEDNA (0x0000)
#define WFS_TTU_LEDOFF (0x0001)
#define WFS_TTU_LEDSLOWFLASH (0x0002)
#define WFS_TTU_LEDMEDIUMFLASH (0x0004)
#define WFS_TTU_LEDQUICKFLASH (0x0008)
#define WFS_TTU_LEDCONTINUOUS (0x0080)
/* Values of WFSTTUCAPS.fwType */

#define WFS_TTU_FIXED (0x0001)
#define WFS_TTU_REMOVABLE (0x0002)

[* Values of WFSTTUCAPS.fwCharSupport, WFSTTUWRITE.fwCharSupport */
#define WFS_TTU_ASCII (0x0001)
#define WFS_TTU_UNICODE (0x0002)

/* Values of WFSTTUFRMFIELD.fwType */

#define WFS_TTU_FIELDTEXT ©)

#define WFS_TTU_FIELDINVISIBLE (@)

#define WFS_TTU_FIELDPASSWORD 2)

/* Values of WFSTTUFRMFIELD.fwClass */

#define WFS_TTU_CLASSOPTIONAL 0)
#define WFS_TTU_CLASSSTATIC Q)

#define WFS_TTU_CLASSREQUIRED 2)

/* Values of WFSTTUFRMFIELD.fwAccess */

#define WFS_TTU_ACCESSREAD (0x0001)
#define WFS_TTU_ACCESSWRITE (0x0002)
/* Values of WFSTTUFRMFIELD.fwOverflow */

#define WFS_TTU_OVFTERMINATE 0)
#define WFS_TTU_OVFTRUNCATE (@)
#define WFS_TTU_OVFOVERWRITE 2

/* Values of WFSTTUWRITE.fwMode */

#define WFS_TTU_POSRELATIVE 0)

#define WFS_TTU_POSABSOLUTE Q)

/* Values of WFSTTUWRITE.fwTextAttr */

#define WFS_TTU_TEXTUNDERLINE (0x0001)
#define WFS_TTU_TEXTINVERTED (0x0002)
#define WFS_TTU_TEXTFLASH (0x0004)

/* Values of WFSTTUFRMREAD.fwEchoMode */

#define WFS_TTU_ECHOTEXT 0)

#define WFS_TTU_ECHOINVISIBLE Q)
#define WFS_TTU_ECHOPASSWORD 2)
#define WFS_TTU_BEEPOFF (0x0001)
#define WFS_TTU_BEEPKEYPRESS (0x0002)
#define WFS_TTU_BEEPEXCLAMATION (0x0004)
#define WFS_TTU_BEEPWARNING (0x0008)
#define WFS_TTU_BEEPERROR (0x0010)
#define WFS_TTU_BEEPCRITICAL (0x0020)
#define WFS_TTU_BEEPCONTINUOUS (0x0080)

/* values of WFSTTUFIELDFAIL.wFailure */

#define WFS_TTU_FIELDREQUIRED 0)

Page 33
CWA 14050-9:2000

Page 34
CWA 14050-9:2000

#define WFS_TTU_FIELDSTATICOVWR (1)
#define WFS_TTU_FIELDOVERFLOW @)
#define WFS_TTU_FIELDNOTFOUND @)
#define WFS_TTU_FIELDNOTREAD @)
#define WFS_TTU_FIELDNOTWRITE (5)
#define WFS_TTU_FIELDTYPENOTSUPPORTED (6)
#define WFS_TTU_CHARSETFORM @)

[* values of WFSTTUKEYDETAIL.[pwCommandKeys */

#define WFS_TTU_NOKEY 0
#define WFS_TTU_CK_ENTER Q)
#define WFS_TTU_CK_CANCEL)
#define WFS_TTU_CK_CLEAR 3
#define WFS_TTU_CK_BACKSPACE (4)
#define WFS_TTU_CK_HELP (5)
#define WFS_TTU_CK_00 (6)
#define WFS_TTU_CK_000 @)
#define WFS_TTU_CK_ARROWUP (8)
#define WFS_TTU_CK_ARROWDOWN 9)
#define WFS_TTU_CK_ARROWLEFT (20)
#define WFS_TTU_CK_ARROWRIGHT (12)
#define WFS_TTU_CK_OEM1 (12)
#define WFS_TTU_CK_OEM2 (13)
#define WFS_TTU_CK_OEM3 (14)
#define WFS_TTU_CK_OEM4 (15)
#define WFS_TTU_CK_OEM5 (16)
#define WFS_TTU_CK_OEM6 a7)
#define WFS_TTU_CK_OEM7 (18)
#define WFS_TTU_CK_OEMS8 (19)
#define WFS_TTU_CK_OEM9 (20)
#define WFS_TTU_CK_OEM10 (21)
#define WFS_TTU_CK_OEM11 (22)
#define WFS_TTU_CK_OEM12 (23)
#define WFS_TTU_CK_FDKO1 (24)
#define WFS_TTU_CK_FDKO02 (25)
#define WFS_TTU_CK_FDKO03 (26)
#define WFS_TTU_CK_FDKO04 (27)
#define WFS_TTU_CK_FDKO05 (28)
#define WFS_TTU_CK_FDKO06 (29)
#define WFS_TTU_CK_FDKO07 (30)
#define WFS_TTU_CK_FDKO08 (31)
#define WFS_TTU_CK_FDKO09 (32)
#define WFS_TTU_CK_FDK10 (33)
#define WFS_TTU_CK_FDK11 (34)
#define WFS_TTU_CK_FDK12 (35)
#define WFS_TTU_CK_FDK13 (36)
#define WFS_TTU_CK_FDK14 (37)
#define WFS_TTU_CK_FDK15 (38)
#define WFS_TTU_CK_FDK16 (39)
#define WFS_TTU_CK_FDK17 (40)
#define WFS_TTU_CK_FDK18 (41)
#define WFS_TTU_CK_FDK19 (42)
#define WFS_TTU_CK_FDK20 (43)
#define WFS_TTU_CK_FDK21 (44)
#define WFS_TTU_CK_FDK22 (45)
#define WFS_TTU_CK_FDK23 (46)
#define WFS_TTU_CK_FDK24 (47)
#define WFS_TTU_CK_FDK25 (48)
#define WFS_TTU_CK_FDK26 (49)
#define WFS_TTU_CK_FDK27 (50)
#define WFS_TTU_CK_FDK28 (51)
#define WFS_TTU_CK_FDK29 (52)
#define WFS_TTU_CK_FDK30 (53)
#define WFS_TTU_CK_FDK31 (54)
#define WFS_TTU_CK_FDK32 (55)

/* XFS TTU Errors */

Page 35
CWA 14050-9:2000

#define WFS_ERR_TTU_FIELDERROR (-(TTU_SERVICE_OFFSET + 1))
#define WFS_ERR_TTU_FIELDINVALID (-(TTU_SERVICE_OFFSET + 2))
#define WFS_ERR_TTU_FIELDNOTFOUND ((TTU_SERVICE_OFFSET + 3))
#define WFS_ERR_TTU_FIELDSPECFAILURE (-(TTU_SERVICE_OFFSET + 4))
#define WFS_ERR_TTU_FORMINVALID (-(TTU_SERVICE_OFFSET + 5))
#define WFS_ERR_TTU_FORMNOTFOUND (-(TTU_SERVICE_OFFSET + 6))
#define WFS_ERR_TTU_INVALIDLED (-(TTU_SERVICE_OFFSET + 7))
#define WFS_ERR_TTU_KEYCANCELED (-(TTU_SERVICE_OFFSET + 8))
#define WFS_ERR_TTU_MEDIAOVERFLOW (-(TTU_SERVICE_OFFSET + 9))
#define WFS_ERR_TTU_RESNOTSUPP (-(TTU_SERVICE_OFFSET + 10))
#define WFS_ERR_TTU_CHARSETDATA (-(TTU_SERVICE_OFFSET + 11))
#define WFS_ERR_TTU_KEYINVALID (-(TTU_SERVICE_OFFSET + 12))
#define WFS_ERR_TTU_KEYNOTSUPPORTED (-(TTU_SERVICE_OFFSET + 13))
#define WFS_ERR_TTU_NOACTIVEKEYS (-(TTU_SERVICE_OFFSET + 14))

/*

/* TTU Info Command Structures */

*

/*

typedef struct _wfs_ttu_status

WORD fwDevice;

WORD wKeyboard;

WORD wKeylock;

WORD WLEDS[WFS_TTU_LEDS_MAX];
WORD wDisplaySizeX;

WORD wDisplaySizeY;

LPSTR IpszExtra;

} WFSTTUSTATUS, * LPWFSTTUSTATUS;
typedef struct _wfs_ttu_resolution
WORD wSizeX;
WORD wSizeY;
} WFSTTURESOLUTION, * LPWFSTTURESOLUTION;

typedef struct _wfs_ttu_caps

WORD wClass;

WORD fwType;
LPWFSTTURESOLUTION * IppResolutions;
WORD WNumOfLEDs;

BOOL bKeyLock;

BOOL bDisplayLight;

BOOL bCursor;

BOOL bForms;

WORD fwCharSupport;

LPSTR IpszExtra;

} WFSTTUCAPS, * LPWFSTTUCAPS;

typedef struct _wfs_ttu_frm_header

LPSTR IpszFormName;
WORD wWidth;
WORD wHeight;
WORD wVersionMajor;
WORD wVersionMinor;
WORD fwCharSupport;
LPSTR IpszFields;

} WFSTTUFRMHEADER, * LPWFSTTUFRMHEADER;
typedef struct _wfs_ttu_query_field

LPSTR IpszFormName;

LPSTR IpszFieldName;
} WFSTTUQUERYFIELD, * LPWFSTTUQUERYFIELD;

typedef struct _wfs_ttu_frm_field

*

Page 36
CWA 14050-9:2000

LPSTR IpszFieldName;
WORD fwType;
WORD fwClass;
WORD fwAccess;
WORD fwOverflow;
LPSTR IpszFormat;

} WFSTTUFRMFIELD, * LPWFSTTUFRMFIELD;

typedef struct _wfs_ttu_key_detail

LPSTR IpszKeys;
LPWSTR IpwszUNICODEKeys;
LPWORD IpwCommandKeys;

} WFSTTUKEYDETAIL, * LPWFSTTUKEYDETAIL;

typedef struct _wfs_ttu_clear_screen

WORD wPositionX;
WORD wPositionY;
WORD wWidth;
WORD wHeight;

} WFSTTUCLEARSCREEN, * LPWFSTTUCLEARSCREEN;
typedef struct _wfs_ttu_disp_light

BOOL bMode;
} WFSTTUDISPLIGHT, * LPWFSTTUDISPLIGHT;

typedef struct _wfs_ttu_set_leds

WORD WLED;

WORD fwCommand;
}WFSTTUSETLEDS, * LPWFSTTUSETLEDS;

typedef struct _wfs_ttu_write_form

LPSTR IpszFormName;
BOOL bClearScreen;

LPSTR IpszFields;

LPWSTR IpszUNICODEFields;

} WFSTTUWRITEFORM, * LPWFSTTUWRITEFORM,;
typedef struct _wfs_ttu_read_form
LPSTR IpszFormName;
LPSTR IpszFieldNames;
} WFSTTUREADFORM, * LPWFSTTUREADFORM;
typedef struct _wfs_ttu_read_form_out
LPSTR IpszFields;
LPWSTR IpszUNICODEFields;
} WFSTTUREADFORMOUT, * LPWFSTTUREADFORMOUT;

typedef struct _wfs_ttu_write

WORD fwMode;

SHORT wPosX;

SHORT wPosY;

WORD fwTextAttr;

LPSTR IpsText;

LPWSTR IpsUNICODEText;

} WFSTTUWRITE, * LPWFSTTUWRITE;
typedef struct _wfs_ttu_read
WORD wNumOfChars;

WORD fwMode;
SHORT wPosX;

SHORT wPosY;

WORD fwEchoMode;

WORD fwEchoAttr;

BOOL bCursor;

BOOL bFlush;

BOOL bAutoENd,;

LPSTR IpszActiveKeys;

LPWSTR IpwszActiveUNICODEKeys;
LPWORD IpwActiveCommandKeys;
LPWORD IpwTerminateCommandKeys;

} WFSTTUREAD, * LPWFSTTUREAD;
typedef struct _wfs_ttu_read_in
LPSTR Ipszinput;

LPWSTR IpszUNICODEInput;
} WFSTTUREADIN, * LPWFSTTUREADIN;

/*

/* TTU Message Structures */

*

/*

typedef struct _wfs_ttu_field_failure

LPSTR IpszFormName;
LPSTR IpszFieldName;
WORD wFailure;

} WESTTUFIELDFAIL, * LPWFSTTUFIELDFAIL;

typedef struct _wfs_ttu_key

CHAR cKey;
WORD wWUNICODEKEey;
WORD wCommandKey;

} WFSTTUKEY, * LPWFSTTUKEY;
/* restore alignment */

#pragma pack(pop)

#ifdef __cplusplus

} [*extern "C"*/

#endif

#endif /* __INC_XFSTTU__H ¥

*

Page 37
CWA 14050-9:2000

